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Abraham Wald'’s Work on Aircraft Survivability

MARC MANGEL and FRANCISCO J. SAMANIEGO*

While he was a member of the Statistical Research Group
(SRG), Abraham Wald worked on the problem of esti-
mating the vulnerability of aircraft, using data obtained
from survivors. This work was published as a series of
SRG memoranda and was used in World War II and in
the wars in Korea and Vietnam. The memoranda were
recently reissued by the Center for Naval Analyses. This
article is a condensation and exposition of Wald’s work,
in which his ideas and methods are described. In the final
section, his main results are reexamined in the light of
classical statistical theory and more recent work.

KEY WORDS: Survivability; Missing data; Approximate
methods; Maximum likelihood.

1. INTRODUCTION

December 7, 1981, was the 40th anniversary of the at-
tack on Pearl Harbor, the subsequent entry of the United
States into World War 11, and also the birth of the Sta-
tistical Research Group (SRG) and the Antisubmarine
Warfare Operations Research Group (ASWORG, later
renamed the Operations Evaluation Group (OEG) and
now part of the Center for Naval Analyses). The early
histories of SRG and ASWORG/OEG were described re-
cently by their original leaders, W.A. Wallis (1980) and
P.M. Morse (1977), respectively. While in the SRG, Abra-
ham Wald developed techniques for estimating the sur-
vivability of aircraft encountering enemy ground fire.
Wald’s methods were used in World War II and by the
Navy and Air Force during the wars in Korea and Viet-
nam. Although this work was declassified many years
ago, it has not appeared in the open literature. At the end
of his historical paper, Wallis (1980) mentions that the
Wald work will soon appear in print. The papers Wald
wrote describing the methods were recently reprinted by
the Center for Naval Analyses (Wald 1980); there are
eight memoranda, totaling over 100 pages.

The primary goal of this article is to present an expo-
sitory survey of Wald’s work. Wald’s work is interesting
from several perspectives. It is of historical interest, since
the questions Wald addressed were most urgent at the
time but are substantively different from questions of in-
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terest to the defense establishment today. Second, Wald's
work is interesting in the light of more recent develop-
ments (e.g., isotonic regression and numerical methods
in missing data problems). It is interesting in a third way,
too, for it gives us another example of a great mind in
action. ‘

In writing this exposition, we have tried to stay as close
to Wald’s work as possible. We have followed the logical
order of the arguments in the order in which he wrote the
memoranda. The work is quite complicated, and many
of the details are quite technical. For ease of exposition,
we have eliminated as many details as possible while at-
tempting to retain cohesiveness and clarity. The reader
interested in full details can obtain copies of the original
memoranda from the Center for Naval Analyses.

In the next section, the operational and statistical prob-
lems are formulated, some sample data are given, and an
overview of the SRG memoranda is given. Section 3 is a
survey of Wald’s work, beginning with the derivation of
his basic equation. Various bounds and approximations
for the survivability are then derived. The section con-
cludes with a discussion of the effects of sampling errors.
In the last section, we reexamine Wald's work in light of
classical statistical theory as well as more recent work.
This reexamination leads us to the general conclusion that
Wald’s treatment of these problems was definitive.

2. THE PROBLEMS AND AN OVERVIEW
OF WALD'S WORK

21 The Operational and Statistical Problems

The operational problem can be stated as follows. Air-
craft returning from missions have hits by enemy weap-
ons distributed over various parts of the plane (e.g.,
wings, tail, fuselage, etc.). The operational commander
must decide (a) what tactics would improve survivability,
and (b) how to reinforce various parts of the aircraft to
improve survivability. Reinforcement means, of course,
that the aircraft is heavier, and this impairs its mission.
The operational commander does not know the distri-
bution of hits on an aircraft that did not return. This is
the basic difficulty in making a decision.

The statistical treatment of the problems that Wald
studied is complicated by the fact that data on downed
aircraft are unobservable. If these missing data were
available, survival probabilities could be estimated by the
methods of isotonic regression. Without such data, Wald
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set to work on the problem of estimating the probability
that an aircraft that has sustained a fixed number of hits
will survive an additional hit. He also attempted to es-
timate the survival probability of an aircraft sustaining a
hit to one of various portions of the body, with different
failure rates (e.g., a hit to the nose is more lethal than a
hit to the middle of the fuselage). Wald's problems were
compounded by a lack of modern computing equipment,
a present-day recourse when one is faced with hard prob-
lems that resist analytical solution.

2.2 A Hypothetical Set of Data

Throughout the memoranda, Wald used data to illus-
trate his methods. Although Wald used different data
values to illustrate the analysis, we have redone the cal-
culations for one set of data. This helps one see the use-
fulness of the more complicated analyses.

The set of data is divided into two subsets. The first
subset pertains only to hits on the aircraft, ignoring lo-
cation of the hit. Assume that 400 aircraft were sent on
a mission and that the numbers of aircraft returning with
i hits anywhere, A;, are Ap = 320, A, = 32, A, = 20, A;
= 4, Ay = 2, and As = 2. The second subset assumes
that the location of the hits is known. Subdivide the air-
craft into 4 main parts: engines (part 1), fuselage (part 2),
fuel system (part 3), everything else (part 4), and let (i)
be the fraction of the area of the aircraft occupied by part
i. The total number of hits to all returning aircraft in this
case is D7~ iA; = 102. Assume that the hits are distrib-
uted according to the following observations:

Part number (i) Number of hits (V) observed on part
1 .269 19
2 .346 39
3 154 18
4 .23 26

In anticipation of what follows, let 8(i) be the fraction
of hits observed on part i. Then (1) = .186, 3(2) = .382,
3(3) = .176, 3(4) = .255.

These are the kinds of data that the operational com-
mander would obtain and pass on to the statistician work-
ing for him. We suggest that the reader now reread the
operational problems described in Section 2.1, consider
the data again, and then decide how one might attack the
problem.

2.3 An Outline of Wald's SRG Memoranda

The basic observational variables are the number N of
aircraft participating in the combat, the number A; of air-
craft returning with i hits, and a; = A/N. From these
data, one wants to find P;, the probability that an aircraft
is downed by the ith hit, and p;, the conditional proba-
bility that an aircraft is downed by the ith hit, given that
it received at least i — 1 hits and was not downed.

Wald then introduced distributions of hits over the air-
craft and found analogous quantities for each subregion
of the aircraft. Figure 1 is a flowchart of Wald’s work on
this problem.
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3. SURVEY OF WALD’S MEMORANDA

This section is a survey of the memoranda. Until Sec-
tion 3.6, it is assumed that sampling errors are negligible.

3.1 Wald’s Basic Equation

In this section, we derive the basic equation satisfied
by the probabilities P; (or g; = 1 — p;). Let a; = A;/N be
the fraction of aircraft returning with i hits. Wald assumed
that a; = 0 if i > n, for some n. Thus, the fraction of
aircraft lostis L = 1 — X7_¢ a;. Wald also assumed that
an unhit aircraft always returns and that there is a value
m such that the probability of receiving more than m hits
is zero. He argued that m = n + 1.

Let x; be the fraction of aircraft downed by the ith hit.
(Thus xo = 0.) Then X,/ x; = L. The x;’s then satisfy
the recursion relationship

i—-1 i-1
xi=Pi(l—Eaj—2xj), i=1,...,n.

Jj=0 Jj=0

3.1

The term in brackets in (3.1) is the proportion of aircraft
receiving at least / hits. If ¢; is defined by ¢; = 1 —
>izd a;, then (3.1) becomes

i=1

X+ pi > xi=pici, i=1,2,...,n.
j=0

(3.2)

For some of the analysis, Wald found (3.2) more useful
than (3.1). The goal now is to somehow relate the ob-
servables (a;) to the probabilities. In SRG 85, Wald de-
rives the following equation, which is basic to all of his
work.

n
a;

j=149 " g;

=l'-ao.

(3.3)

Equation (3.3) relates the observables a;, the fractions of
aircraft returning with j hits, and the unknowns g;, the
conditional probability of not being downed by the jth hit
given that the first j — 1 hits did not down the aircraft.
It is the fundamental equation of the analysis. In the next
section, we compare Wald’s work with other approaches
to this problem. For this reason, it helps to review Wald’s
derivation of (3.3).

Let b; be the hypothetical proportion of aircraft hit {
times if dummy bullets were used. Then b; = a;; set y; =
b,‘ — a;. In addition, yi = P;b; = Pia; + y,-). Thus yi =
(Pi/ Qi) a;, where as before, P; = 1 — q,q, - q; and 0O:
= ¢ *** qi. Hence we obtain y; = (ai/q, ** q;) - a;.
Summing up to n and noting that >/~ y; = L gives
(3.3).

Equation (3.3) is easily solved with the simplifying as-
sumption of constant g; = q. For example, for the data,
(3.3) becomes the fifth-order equation

ﬁ + E + ﬂ + @ -005
9 ¢ ¢ g ¢
which yields ¢ = .851. Hence p;, the probability of the

=.20, (3.4
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ith hit downing the aircraft given that the first i — | hits
did not down it, is p; = .149 (for all i).

Once we know p;, we can compute x;, the ratio of the
number of aircraft downed by the ith to the total number
of aircraft participating, recursively from Equations (3.1)
or (3.2). We find that x, = .02980, x, = .01344, x; =
.00399, x; = .00190, and xs = .00087.

These results are easily obtained, but are based on the
assumption of g, = g, = -- = q,. This severely limits
their usefulness. The rest of Wald’s memoranda studies
ways of relaxing this assumption.

3.2 A Least Upper Bound for the Probability of /
Hits Downing an Aircraft

Wald’s next step was to find a bound on P; = | —
ITi=1 g, which is the probability of an aircraft being
downed by i hits. The bound he found is sharp and its
attainment corresponds to the worst case in terms of sur-
vivability.

The problem of interest may be written as follows:

i
minimize [] g;
i=1

) n aj

ubje

subject to g‘,l P
Equation (3.5) is a nonlinear optimization problem (Avriel
1976). Wald obtained an iterative solution as follows.
First he showed that if a set {g,*, . . ., g,*} solves (3.5),
then g* = g, \* = -+ = g,*; that is, that the g, are all
equal forj = i.

Applying this result when i = | means that g, is min-

imized if it satisfies

n

a;
—= =1 — a,.
jgl qr °
Assume now that g, is known by solving the algebraic
equation (3.6). Next one needs to find the value of g» that

minimizes g,q,. Using the result given above, problem
(3.5) becomes

=l—'ao.

(3.5)

(3.6)

minimize q,q,
. l & a
subject to — L =] - g,.
a jgl q7"! ¢
Straightforward solution via the Lagrange multiplier
method gives

3.7

Il < U-=Dg

ql = l — a0j=2 QZj_l
and
n—1 .
(j - ])aj+l
— = qg,. 3.8
Ez - i (3.8)

Elementary arguments show that these equations have
exactly one root in (q,, g,).

Wald then generalized this argument to determine the
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minimum of []{-, q,;. He followed the same kind of rea-
soning, starting with the assumption that g¢; = g, i = j
= 2: then one wants to minimize q,q>'~'. The Lagrange
multiplier method is used again; only the details change.
It is clear that even with present-day computing abil-
ities this approach quickly becomes complicated and
time-consuming. In 1943, the task of exact computations
was hopeless for any problems of operational interest;
thus Wald considered various approximation schemes.

3.3 Approximate Bounds on P,

Wald’s next step was to obtain approximate upper and
lower bounds on P;. Let P* be the maximum value of P;
and let Q* = | — P;*. The first step is to find the lower
bound z; of @;*, that is, to find a bound on the minimum
of Q;. Wald used an interesting kind of hypothetical rea-
soning: Let y; be the fraction of the returning aircraft that
would be downed if they were to receive i — j additional
hits. Then one obtains

2y,+2r,,1—l2 ,n.

i=0 Jj=

(3.9

After some algebraic manipulations, Wald obtained the .

bounds

Z X;. (3!0)
=1

Equation (3.10) provides a lower bound on Q;, once an
- upper bound on >}, x;is known. Wald showed that the
maximum value of X; = > ., x; occurs when p, = p, =
<+ = p, = p. In such a case, the solution of (3.6) gives
= | — p, and then the x; are obtained from (3.1). We
will let z; be the lower bound on Q; obtained in this man-
ner.
Next Wald turned to the problem of estimating an upper
bound on the value of Q;. He showed that such an upper
bound is given by

t; = min[t'n’, l?zi_l, PR l~l,'_|2, l?,'], 3.11)
where i, is the positive root of the equation
n a
2 omm= - S a (3.12)
j=r S=0

He obtained (3.11) and (3.12) by a sequence of manipu-
lations on equations analogous to (3.5) and (3.6).

Let us now apply these results to the data. First we
will find the lower bound z;. The first step is to find gy,
the solution of (3.3) when ¢, = ¢, = - = g,. In this
case, we have found g, as the solution of (3.4); that is,
qo = .851. We have also found the x; and thus obtain
the upper bounds X; = >,/ x;. For the data, we obtain

= .02980, X, = .04324, X; = .04723, X, = .04913,
Xs = .05000. According to (3.10), our lower bound is z;
=1 — (XJ/(1 = Xizd a;)). Hence we obtain z, = .85100,
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22 = .63967, z3 = .32529, and z, = .18117. It is not nec-
essary to calculate zs, since Qs can be obtained directly.
In this case, zs = .090909.

Now consider the upper bounds #;. Let us write out
some of the Equations (3.12), to see what they look like.
For r = 1, we obtain (3.4), so that @4, = .851. Forr =
2, (3.12) becomes

az as [ as
—_— —+——3+—4~I—a0—a|,

! (3.13)
u u u u

which has solution #, = .722. In a similar way, one finds
i3 = 531, s = .333. The ¢; are given by (3.11); namely

tH = .851

t; = min(&,?%, @) = .722

13 = min(i,>, @,?, i;) = .521

ty = min(a*, @i, 3", ds) = .282. (3.14)

Note that t5 is not calculated since the exact value of Qs
can be found.

In Table 1, we compare the exact result obtained by
the method of the previous section with lower bound (z;),
upper bound (¢;), and the value obtained assuming all hits
are equally lethal (go').

3.4 Bounds on P, Under Additional Assumptions

The results of the previous section are, from a com-
putational viewpoint, less cumbersome than the exact re-
sults. They are still complicated to use, however, so Wald
studied the bounds on survival probability under addi-
tional assumptions. These assumptions are.that

MG =givrShag;, j=12....,n—1 (3.15
for fixed known A\, and \-, and that
n
2 (ljk[_j(j_”/z <] - dy. (3.'6)
=1 .

Note that (3.16) need not be true if A, is too small; but
if Ay is close enough to 1, then (3.16) will be true. The
basic Equations (3.3) and (3.16) imply that ¢, < 1.
Wald first calculated the values of ¢, . . . , ¢., which
make Q; (i < n) a minimum. Denote these by ¢,*, . . .,
q.*. By using a straightforward proof by contradiction,
he proved the following: (a) forj =i, i + 1,...,n ~
I, gj+1* = N2g;*; and (b) if j is the smallest integer such

Table 1. Exact and Approximate Values of Q;

Value
Exact Lower Upper Equal Lethality
i Value Bound Bound of Hits
1 .851 .851 .851 .851
2 721 .640 722 724
3 517 325 521 616
4 .282 .181 .282 .525
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that x4 1* = N2q,* for all k = j, then g,* = g, * for

= 2,3,...,j — 1. These results can be viewed as
analogs of the results in Section 3.3.

LetE,,r=1,...,i — 1, be the minimum value of
Q;: under the restriction that g¢;»; = Mg, i =1, ...,
r—1,and gj+1 = \og;jforj=r+1,...,n — 1. The
above results show that Q; = min{E;, E», . . ., E; ;- }.
The results in Sections 3.2 and 3.3 show how the E;, can
be calculated. In particular, Wald showed that if g, is the
positive root (in g) of the equation (forr = 0, 1, 2, . .
i—-1

r+1 n—r—1

D oah I g S gy N T2

j=1 J=1
X NI g=CH14D) = | — gy (3.17)

then an approximation to E;, is
E' ~ )\ e+ D2+rii—r=1) )\ (i= G- r—l)/Z

. (3.18)

Similar arguments show that if g,*, . . ., q,,* are values
of g; minimizing Q, = [I/~\ g/, then g;+\* = \\g*.Jj
= 1,...,n — 1. This means that if g is the root of the
equation .

n

S a2 g = |~ ap,

j=1

(3.19)

then the minimum value of Q,, is A"~ "2 g,

Wald proceeded in the same fashion to show that the
maximum of Q, is A"~ "2 g", where ¢ is a solution of
the (3.19) with X\, replaced by Aa.

There is a quantity analogousto E;.. Namely, if D;, is
the maximum of Q; under the restriction that g;.., = \,g;
forj=r+ 1, ,n— land g;«) = Nag;forj =1,

r — 1, then Wald showed that the maximum of Q;
is max{D;, ..., D;;—,}. He showed that a good ap-
proximation to D;, is obtained from (3.17) and (3.18) with
the A and A, interchanged.

We apply these results to the data with A, = .85, A
= .95. It is easy to check that (3.16) is satisfied.

To find the lower limit of Q;, the four equations (for r
0, 1, 2, 3) (3.17) must be solved. For example, for r
0 this equation is

az as ds

+ —= + +
Azq- _}\23(13 )\26(14

Q|2

ds
N mqs =1 - ao.
The roots of (3.17) for the values r = 0, 1, 2, 3 are go =
887, 81 = .938, g, = .964, and g3 = .979. Next, the E;,
are found approximately from (3.18), and then Q; is the
minimum of the E;,.. Table 2 shows the results of such
calculations. The lower limit of Qs is found by using
(3.19). In this case, the root of (3.19) is ¢ = .986 and the
lower limit of Qs = \,'°¢° is .183.

To find themaximum value of Q;, the same procedure
is followed. Since the details are the same, only the final
results will be given. Table 3 shows both bounds.

+ —— (3.20)
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Table 2. Estimating the Minimum of
the Survival Probability
Eir min Q;

i r gr Approximately Approximately
1 0 .887 .887 .887
2 0 .887 747

1 .938 747 .747
3 0 .887 .598

1 .938 .567

2 .964 .550 .550
4 0 .887 .455

1 .938 .408

2 964 .364

3 979 347 .347

3.5 Analysis of Vulnerability Areas of the Aircraft

Wald considered next the problem of determining the
vulnerability of different parts of the aircraft. The idea
here is that the location of the hits on returning aircraft
provides useful information on the vulnerability of var-
ious parts of the aircraft. Wald began with the premise
that one knows the conditional probability v;(iy, . . ., ix)
that area m will receive i,, hits given a total of i =
>k =1 im hits. He argued that v;(i\, . . . , ix) can be ex-
perimentally determined by firing dummy bullets at real
aircraft. The quantity of interest here is Q; (i), . . . , ix),
the probability that an aircraft is not downed given i,, hits
to area m, with 2% _, i,, = i. Wald first formulated the
problem in a very general setting, where it is essentlally
intractable.

To make any progress, he needed to introduce an as-
sumption of independence. Thus, he assumed that if g(i)
is the probability that one hit on area i will not down the
aircraft and if y(i) is the conditional probability that area
i is hit given that one hit occurred, then

&
IT (atm)=,

m=1

Qilin, ..., i) = (3.21)

1l
; tm=1
[
m=1

In (3.21) and (3.22), it is understood that D% _, i,, = i.
Let 8()) be the probability that area i is hit, given that the
aircraft received exactly one hit that did not down it. Then

Yiliy, . , k) =

(3.22)

Table 3. Lower and Upper Bounds on Q;

i Lower Bound on Q; Upper Bound on Q;
1 .887 .986
2 747 .826
3 .550 .631
4 .347 .463
5 .183 .329
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by its definition
3() = kL(i)q_(')_. .
> (gl

(3.23)

In (3.23), recognize the summation as the probability g
that a single shot did not down the aircraft. Under the
assumption of independence, g will satisfy (3.3) with g;
= g and may be replaced by the solution to that equation.
Equation (3.23) is rewritten as

_ d)q
Y@’
where (i) is assumed to be known from auxiliary tests

or equated with the proportion of surface area associated
with part i, and 8(/) may be estimated from the data as

q(i) (3.24)

S e S jiaGns i)

87 = Jk Ji . 3.25

@ 2 2 G+ e+ jdatn, i) G2
Ja A

The interpretation of d(i) is that it is the ratio of the total
number of hits in area i of the returning aircraft to the
total number of hits on the returning aircraft. Thus, 8())
is empirically determined and ¢(i) is computed by apply-
ing (3.23) to the data. Such analyses have actually been
performed on real data, with success.

We apply this approach to the data. We have already
seen that the positive root of (3.3) with equal g; is go =
.851. Thus g, is the overall probability of surviving a hit.
The probability of surviving a hit to part i is given by
(3.24). The q in (3.4) is qo; (i) (the fraction of area oc-
cupied by part i) and 3(i) (the fraction of hits to part i)
were given along with the data. The results of the cal-
culations are shown in Table 4. For these data, the most
vulnerable portion of the aircraft is the engine area.

3.6 Effects of Sampling Errors

Wald considered sampling errors in the special case of
equal (but unknown) g;, and he derived confidence limits
for q.

In the absence of sampling errors, the x; are recursively
defined by (3.1) with equal p;. When there are sampling
errors, (3.1) is replaced by

i-1t
X; = p,(l - 2 a —
j=0

i—1

> x,) ,

Jj=1

(3.26)

Table 4. Probability of Surviving a
Single Hit to a Given Part

Probability of Surviving

Part a Single Hit
Entire Aircraft .851
Engine .588
Fuselage 940
Fuel System 973
Others .939
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where p; has the distribution of the success ratio in a
sequence of N; = N(1 — Diz{a; — 2 iz x;) independent
trials. Still assuming that x; = 0 for i > n (which is not
really true for the case with sampling errors), the basic
equation (3.3) becomes

”n al

j=1Gi Gj

=1 — a. 3.27)
Here g; = 1 — p; is an estimate for g; but the §,’s are
unknown.

Wald derived confidence bounds in the following man-
ner. Consider a hypothetical experiment in which b; is
the fraction of aircraft that would be hit exactly i times
if dummy bullets were used. The distribution of Na; is
the same as the distribution of the number of successes
in a sequence of Nb; independent trials, each trial having
a probability of success ¢'. This gives

E(ailq’) = b;, var(ailq') = -b—'(-l—-—-_‘i)- . (3.28)

Ng

Summing (3.28) gives
E(z (l,'/qi) = Z [J,' =1 - dy,
i=1 i=1

2oa; - bi(l — qi)

var -] = —_—. (329)
(igl Q') i=1 Nq'

For moderate to large N, appeal to the central limit theo-
rem and conclude that if

J’A" ! e~ | =
=Aa ‘\/-ZTT- ¢ - a’

then an a confidence interval for ¢ is

" i 12
I - a0 — M(Z bd - 43 "))

i=1 Nqi

] a; n b,(l _ q,‘))lll
= —-=1 - + Ao —_— . (3.30
i§| q o (:gl Nq' ( )

The only trouble with (3.30) is that the b; are not known.
Again appealing to limit theorems, Wald replaced b; by
ai/q" (this replacement is accurate to O(1/\/n)). Hence
we obtain a confidence interval of the form

n A\ 12
l _ao_)\m(z ai(l CI))

=1 Ng*¥

szﬁjﬁsl—ao+>\a(2

i=1

— A\ 112
%qz,.‘”) . (331)

A final simplification is achieved by another appeal to
a limit theorem. If g, is the root of (3.3) with equal g;,
then as N — x, g — go, so Wald replaced ¢* by ¢o¥ in
(3.31), and the resulting confidence limit is now very sim-
ple.

These results can be summarized in the following el-
egant fashion. If a; are subject to sampling error and q is
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the true parameter, then 32, a/q' is normally distrib-
uted with mean 1 — g, and variance given by (3.29).
To show how this works, we will derive the 95% and
99% confidence intervals for the data. The first step is to
find the positive solution, 4o, of (3.3) with equal q;. In
this case, go = .851. The second step is to find the ap-
proximate variance of >.7_, a;/q’. This variance is

n

ol =3 a(l - q0')/Ngo¥,

i=1

(3.32)

and in this case we find o = .01373. According to (3.31),
the confidence limits are found by solving

‘a‘§= 1 —a(,i)\uc,

i=1 4

where A\, = 1.960. 2.576 for the 95% and 99% limits,
respectively. For the 95% confidence limit on gy, the so-
lution of (3.33) gives [.797, .921] and for the 99% confi-
dence limit, [.782, .947)].

(3.33)

3.7 Miscellany

SRG Memoranda 109 and 126 deal, very briefly, with
these topics: (a) factors that are nonconstant in combat,
(b) nonprobabilistic interpretation of the results, (c) the
situation when (/) are unknown, and (d) vulnerability to
different kinds of guns. The most interesting of these top-
ics is the last one, in which Wald generalizes the previous
work to include different kinds of weapons. Namely, in-
stead of working with ¢(i), the probability that an aircraft
survives a hit to part i, he works with q(i, j), the prob-
ability that an aircraft survives a hit to part i by weapon
type j. The generalization is conceptually straightfor-
ward, although the details are complicated.

4. DISCUSSION

In this section, we propose to reexamine Wald's work
on aircraft survivability, relating his results to classical
statistical theory as well as to more recent statistical
thought. We believe that such a development makes
Wald's recommendations more easily understood. It also
allows us to support the general conclusion that Wald’s
treatment of this problem was definitive, since, through
this reexamination, we are able to identify the optimal
character of Wald’s estimators and to explain why treat-
ment of more general problems is impossible with the data
Wald had available to him.

Let us consider the first data set. Wald does not ex-
plicitly discuss a model for the data he seeks to fit. It is
clear, however, that the appropriate model is multinom-
ial. It is also clear that there are missing data. It is usefu]
to picture the data as embedded in the following scheme.

XUI Xll le X3| X‘” X5|
Xi2 X X X Xs 4.1

where X;, = the number of aircraft returning with hits,
and X;> = the number of aircraft downed with { hits, Data
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Set 1 amounts to Xo,i=0,...,5, while Xa, i =1,
-+ ., 5 are unobservable. The multinomial distribution
based on 400 observations classified into 11 cells repre-
sents the full model for the collection {X;;}. Let the pa-

rameters of the full model be denoted by {pi;}. Wald pre-
fers to use the parameterization:

(1) por, ..., psy (for which do, . . ., as are the cor-
responding sample proportions in
Wald’s notation)
(2 O, ..., Qs, where
Pi
= . 4.2)
" opa + P2

Whatever the parameterization, the critical fact vis-a-vis
the estimation problem of interest is that the full model
is determined by 10 parameters while the available data
have only six degrees of freedom. Put another way, the
10-parameter model for the available data is not identi-
fiable; indeed, the likelihood depends on {p,s, . . . , ps,}
only through the value of 35., pi2. The nonidentifiability
of the model for X;,, i = 0, ..., 5 explains the role of
the assumption

Qi =4q¢ foralli. (4.3)

This restriction renders the estimation problem well de-
fined. The necessity of identifiability also dictates the as-

sumption (for the purpose of analyzing the data set) that
the probability of sustaining more than five hits is zero.

We now turn to the derivation of the maximum like-
lihood estimators for the parameters of the multinomial
distribution with missing data under the restriction (4.3).
Initially, we write the likelihood as

s s 40035 oy
P x (H p“.wl)(l _ E Pil) .
i=0

i=0

The likelihood equations

P s
—%=0
{apu }i=()

i=0,...,5.

are equivalent to

Pa = N
Now, the parametric analog of Wald's fundamental equa-
tion (3.3) is

n
z’jpj—l=l—po|.

. (4.4)
Ji=1 qi

4

- The latter equation can be shown to be algebraically

equivalent to
"

2 (pir + Pi2) =1 = py,

i=1

4.5)

which simply specifies that all cell probabilities sum to
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one. Under restriction (4.3), Equation (4.4) becomes
P

=1 - pn, 4.6)

QI'B

specifying g implicitly as a function of {p;, i = 0, ...,
n}. Now, let § be the solution of (3.3), which, for the first
data set, can be written as

5 A

4.7)

From the invariance property of the MLE’s, it is clear
that § is the MLE of the parameter ¢.

The regularity of the multinomial model implies the
asymptotic optimality of Wald's estimators of the param-
eters {pi} and p. Wald's confidence interval for the sur-
vival probability g can be obtained via MLE theory and
thus, its optimality in large samples can be asserted. Since
interesting larger models cannot be treated with the data
available, Wald’s estimation results are, with a suffi-
ciently large sample size, the best possible. For larger
models, Wald appropriately turns to the development of
bounds on survival probabilities.

Two important areas of statistical analysis having some
bearing on Wald’s work have been developed since
Wald’s time. The first is the area of isotonic regression,
a subject treated in depth in the recent book by Barlow
“ et al. (1972). The second is the treatment of problems
with missing data via the EM algorithm (see Dempster,
Laird, and Rubin 1977). Isotonic regression would appéar
to be an appropriate methodology in Wald’s problem,
since aircraft vulnerability undoubtedly increases with
the number of hits sustained; that is, it is reasonable to
expect that p, = - = p,. In spite of its intuitive
appeal, the 1sotomc version of Wald’s problem suffers
from nonidentifiability, since ordering of parameters does
not reduce the dimension of the parameter space. Thus,
given Wald's data, estimation via the methods of isotonic
regression proves impossible without additional assump-
tions. If complete data were available, the unrestricted
MLE’s for the g/'s are given by

qu i=1,...

. 5.
Xii + Xi2

4.8)
The problem of “‘isotonizing’’ these estimates is formally
equivalent to the problem of estimating ordered binomial
parameters treated by Barlow et al. (1972, p. 102).

The EM algorithm does not help for similar reasons.
When the model is not identifiable, a starting value p'®
for the parameter produces expected X values, which in
turn produce p'"’ = p. In the reduced model, subject
to (4.3), one can treat maximum likelihood estimation
analytically, and there is no need to employ the EM al-
gorithm.

Let us now examine Wald's estimators for the survival
probabilities of various aircraft sections. The portion of
the data set classifying hits by part can be viewed as
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embedded in the array

Y Yo Yy Y4 N,

Yi2 Yoz Yas Yo N> 4.9)
where Y; = # of hits to part i on returning aircraft; Y,
= # of hits to part i on downed aircraft: N, = >, Y3
N> = >}, Y. The data consistof ¥;, i = 1, ..., 4

and Ny, while Yi2.i=1,. ..
Define the following events:

,4 and N> are unobservable.

A; = {the ith section is hit}
= {the aircraft is hit}
= {the aircraft is not downed}.
Wald’s parameters may be identified as
q = P(B|A), qii) = P(B| A)
() = P(A;| AN B), y(i) = P(A;| A). (4.10)

With complete data as pictured in (4.9). the MLE’s of
q(i) are simply

Gy = —2—  i=1,..

%
Yo + Ya

“4.11)
With the incomplete data available to Wald, one must
make use of the structural relationship (3.23) (which is
immediate from the definitions in (4.10)) and the as-
sumption that y(i), i = 1, , 4 are known. Wald ex-
plicitly remarks on the impossibility of estimating v(i) and
4(i) simultaneously from his data. However, MLE's for
{3(:)} and g may be obtained from the data, and the es-
timates

Gy = — - ¢ i=1,....,4 4.12)
are maximum likelihood estimates by invariance, pro-
vided these estimates lie in the unit interval. Wald does
not deal with estimation problems in which one or more
of the estimates G(f) exceed one. In such cases, the MLE
of the vector (g(1), . . . , g(4)) lies on the boundary of the
parameter space, and its identification is tedious but
straightforward.

In our discussion of Wald’'s formulation and solution
of a variety of problems dealing with aircraft survivabil-
ity, we have mentioned a number of assumptions he im-
posed to obtain closed-form solutions or efficient bounds.
These assumptions deserve scrutiny. Among the as-
sumptions one encounters are (a) constant vulnerability,
that is, g; = q, which is an independence assumption; (b)
known bounds on rate of growth of vulnerability, that is,
Mg = @j+1 = A\agj; and (c) independence of survival
among and within areas of different vulnerability. The
main cause for concern regarding these assumptions is
that the data available do not provide a means for inves-
tigating their validity. Consider assumption (a), for ex-
ample. With complete data (corresponding to {x;;} in (4.1))
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one could investigate statistically, via a likelihood ratio
test or otherwise, the validity of the assumption g; = q.
With the type of data available to Wald, such an option
is not open because of the lack of identifiability of larger
models. Wald cautioned his readers that the solution he
provides should be used only “‘if it is known a priori that
g1 = q2 = -+ = q,."" How and whether such a priori
knowledge could be garnered is open to debate. Wald
does provide an option for those who are more conser-
vative. The lower bounds for Q; may be considered con-
servative estimates of survival probabilities, although
they might often be too small to be useful. The dilemma
one encounters with the foregoing three assumptions
mentioned is similar to that faced in competing risks
methodology, where considerable recent work has fo-
cused on identifiability and bounds for survival proba-
bilities (see Tsiatis 1975 and Peterson 1976).

Viewing Wald’s work on aircraft survivability in light
of the state of the art at the time it was done, it seems to
us to be a remarkable piece of work. While the field of
statistics has grown considerably since the early 1940°s,
Wald'’s work on this problem is difficult to improve upon.
Much of the work appears to be ad hoc—there are few
allusions to modeling and no reference to classical sta-
tistical approaches or results. By the sheer power of his
intuition, Wald was led to subtle structural relationships

JAMES O. BERGER*
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(e.g., Equations (3.3) and (3.24)), and was able to deal
with both structural and inferential questions in a defin-
itive way.

[Received May 1981. Revised March 1983.]
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Comment

The authors are to be congratulated on a fine paper.
They have distilled the key ideas in Wald's work on air-
craft survivability, and have successfully related the ideas
to standard statistical methods. The bulk of this discus-
sion will be concerned with this relationship of the work
to standard statistical methods, particularly the use of
statistical models to describe the situation. Some atten-
tion will also be given to decision-theoretic issues.

1. STATISTICAL MODELING

As indicated in the paper, the primary quantities stud-
ied can be considered

Pil

P (i hits and survival)

Qi ’ >\i9

where

Qi = P (survival | { hits),
A; = P (i hits),

and
Po* = P (not surviving) = 1 — 3 P,.
i=0

If the observations can be assumed to be independent,
and out of a total of n missions the data are

Xi = the number of aircraft that receive i hits
and survive,
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Xo* = n — > Xi = the number that do not

i=0
survive,

then the likelihood function for P = (Py*, Py, P2y, . . .)
is proportional to

(H PilX“) (Po*)**

i=0

L(P)

£ Ed X()*
[H (Q; - )\i)x":“:[ -3 0 }\i] . (D
i=0 i=0
In this framework, which is more or less that given in
Section 3 of Mangel and Samaniego, Wald's model can
be described by the following assumptions:
@ Q=4
(i) Pan=0

(i.e., iid survival of each hit);
for i = 6 (or, more generally, for i for
which X = 0)

We will return to the crucial assumption (i) later, but for
now will accept it. Assumption (ii) leaves an obvious un-
comfortable feeling, but probably makes no great differ-
ence for the type of data expected. A third assumption,
actually a lack of an assumption, is also a possible cause
for concern: Wald effectively leaves the A; (the proba-
bility of i hits) completely unrestricted, whereas it would
seem more natural to restrict the parameter space to con-
sist only of decreasing \;. (Actually, the \; are never even
mentioned in Wald’s work, an omission of some concern,
as we shall see.)

As mentioned in the paper, Wald's analysis effectively
corresponds to a maximum likelihood analysis using (1)
and assumptions (i) and (ii). The resuits of this analysis
for the given data are ¢ = .851 and Ni = X/[400 (.851) ].
The values of the A, for the data are given in Table 1, and
indeed they are not decreasmg (As > A4). The possible
difference here seems minor but, as a theoretical point,
it seems desirable to ensure monotonicity of the \; in the
analysis. (Perhaps the most straightforward way of in-
corporating monotonicity is simply to put the (noninfor-
mative) uniform prior distribution on

= [(Noy -+« s As): DA = L, Ag = Ny = - = \g},

a uniform prior on ¢ (in [0,1]), and calculate the posterior
means, providing the numerical integration problem is
feasible.)

The most significant question that can be raised con-

Table 1. Model Fit

i AT A; Xi Xin

0 .8000 .8000 320.0 320
1 .0928 .0940 31.5 32
2 .0640 .0690 18.5 20
3 .0295 0162 7.2 4
4 0102 0095 21 2
5 .0028 0112 05 2
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cerning Wald’s analysis is that of overparameterization.
The parameters are (g, Ao, . . . , \s), seven parameters
for the seven data values (Xo*, Xo1, ..., Xs;). Wald
attempts a model robustness study by finding lower and
upper bounds for the P;; (actually, for the Q;), but these
bounds are too disparate to be of much use (more on this
in Section 3). The best way to investigate model robust-
ness is usually just to try other possible models. What
follows is a minimally parameterized model, which is ac-
tually the model we produced when challenged in the
paper at the end of the Section 1.2 to analyze the data
before reading further. (For fear of overparameterization,
it is often helpful to start out by trying very small models.)
Consider the following assumptions:

(i) Qi qf;
M N=(0-=N)ye (1 —e Mifori=1I.

Note that this is a three-parameter model, the parameters
being0 =g =1,0< Ao < 1,and vy > 0. Our thoughts
in choosing this model were (a) independence of effect
of hits is a reasonable starting point, and (b) the number
of hits might be approximately Poisson, except that some
planes may never come under effective fire (for a variety
of reasons), so that extra mass at zero hits is to be an-
ticipated. Thus A, was left unrestricted, while the re-
maining \; were given the truncated Poisson distribution.
Of course, these assumptions can also be criticized, but
they seemed to be a plausible starting point. Note that
these assumptions bypass the need to make Wald's as-
sumption (ii), and also will automatically result in de-
creasing \; (except possibly for Ao, which seemed so
likely to be large that monotonization would probably be
unnecessary).
Using the fact that

il

> gyl = e - 1,

i==]

the likelihood function (1) can be written (under our as-
sumptions and after some algebra) as

L(q, Ao, 'Y) = }\()X‘"(l - )\o)n—Xm (e¥ - l)(.\’ul—n;
X (qy)SiXn (oY — eav)n-XXiy

A routine maximum likelihood analysns for the given data
yields Ao = .8, g = .85, and ¥ = [.38. How well this
model fits the data can be seen in Table 1, which presents
the estimated A; under this model, namely Ao* = .8 and

=U =AM Fe (1 -—e N, iz1,

along with the expected observations,
X| =n- P| =n- )\,*,

and the actual observations, X“ For comparison pur-
poses, the unmodeled estimates \; for the \; are also
given.

The low-parameter model seems to fit the data ex-
tremely well. Of course, one would expect to be able to

PRSI —
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fit seven decreasing data points well with some three-
parameter model, but not necessarily this well and not
necessarily with a model incorporating separate and very
specialized structures for the Qi and the \;. In any case,
the main feature of interest here is that the answers ob-
tained with this plausible three-parameter model are vir-
tually identical to those of Wald’s analysis (especially the
4), so that one can feel somewhat confident about the
model robustness of the answers.

Before moving on, it is worthwhile commenting that,
instead of the maximum likelihood analysis, a noninfor-
mative prior Bayesian analysis could have been per-
formed, using (say) a constant (generalized) prior on the
set

Q={g v 0sg=1, A=), y>0}

The advantages of this would be (a) the constraint Ay =
A is automatically built in; (b) one does not have to worry
about having found only local maxima of the likelihood
function; and (c) with essentially no extra effort, the pos-
terior variances can be found, yielding good small-sample
variance estimates (an attractive alternative to the clas-
sical need to resort to- large-sample theory).

2. ANALYSIS OF VULNERABILITY AREAS

It is in this aspect of the problem that statistical mod-
eling can reap greater rewards than Wald’s approach.
Wald needed to assume that the effects of hits on a given
area of the aircraft were independent (an assumption that
seemed to work reasonably well for the entire aircraft),
but this is unlikely to be true for certain vulnerable areas
of the aircraft. One obvious example is the important en-
gine area: A multi-engine aircraft might well be able to
fly with one engine out, so that the effect of the first hit
to the engine area would be inconsequential, while a sec-
ond hit (to a different engine) could be fatal. [t is not hard
to think up appropriate models for this situaticn, and no
identifiability problems arise as long as one also makes
some effort to model the probability of i hits to a given
area (combining, say, the ideas discussed earlier about
modeling \; with Wald’s ideas concerning the probability
that a single hit strikes a given area).

3. LOWER BOUNDS ON SURVIVABILITY

A large portion of Wald’s analysis is concerned with
obtaining lower bounds, Q*, on Q;, the probability of
surviving / hits. One possible use of this would be to allow
the aircraft commander to abort a mission if the risk of
subsequent hits is too high, but common sense would
argue that the relevant factor in such a decision is not
how many hits have been sustained (which may even be
hard to determine during combat), but rather the amount
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of actual damage (say, fuel lost or engines destroyed) that
can be determined. Data allowing analysis of such oc-
currences would be hard to come by, and any such anal-
ysis would almost certainly involve detailed knowledge
about the workings of the aircraft.

A second possible use of the Q:* would be in bounding
the overall probability of mission survival, presumably
for logistic purposes. Clearly

¥

P (survival)

> Qi \;
i=0 A

= 2 Q,‘* ‘ Ai.
i=0

The difficulty with this use of the Q/* is that Wald de-
termined Q/* as 0;* = ming Q:, where @ is the set of
probability structures such that Po*, Py, ..., Ps; are
equal to the sample proportions. Besides the lack of at-
tention to the effect of sampling error on the analysis,
there is the more basic problem that each Qi is minimized
separately over ?, and each minimum is attained at a
different probability structure. Thus

min ‘l’ > 2 Qi* * }\,'.
P i=0

so that one can get a better lower bound by simply min-
imizing V¥ directly over 2. Of course, this will be com-
putationally more difficult, which could well explain
Wald’s use of the Q*, but today the additional compu-
tation would pose no serious problem.

As a final point, the use of lower bounds at all is prob-
ably unwise. Providing one can arrive at model-robust
estimates of survivability, use of the estimates discussed
in the previous paragraph will generally prove more val-
uable than use of lower bounds.

4. CONCLUSIONS

All nitpicking aside, the authors seem correct in their
conclusion that the answers Wald obtained could not be
greatly improved upon today. It can be argued, however,
that the methodology employed by Wald was much more
difficult and far less flexible than standard methodology
involving statistical modeling. Of course, Wald was work-
ing under computational limitations (although use of sim-
ple statistical models and maximum likelihood methods
would not necessarily have been harder computation-
ally), and could perhaps have been writing for a special
(nonstatistical) audience. Whatever the reasons for his
approach, we can admire his ingenuity while being thank-
ful for the availability of more powerful methods today.
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MARC MANGEL and FRANCISCO J. SAMANIEGO

1. INTRODUCTION

In this rejoinder we reply to the published remarks of
Berger, respond to questions and comments that were
raised at the American Statistical Association annual
meeting in Toronto in August, 1983, and comment briefly
on our recently completed Monte Carlo study on the ro-
bustness of Wald’s methods.

2. REMARKS ON BERGER'S DISCUSSION

We thank Berger for his thoughtful and thought-pro-
voking commentary on Wald's paper and ours. We are
in general agreement with Berger on the main issues he
has raised: (a) careful modeling can produce an excellent
fit of Wald’s data, and the related statistical computations
are not that imposing; (b) some of Wald’s assumptions
are more troublesome than others; and (c) the lower
bounds produced by Wald are mathematically interesting
but of limited use in decision making. In spite of the con-
sonance of our views with Berger’'s, there are one or two
points on which we differ.

In our Section 3, we described Wald’s first data set as
an incomplete sample from a multinomial distribution.
Berger criticized Wald’s assumption that the probability
of receiving more than five hits is zero. Actually, the
assumption is inconsequential in a multinomial model,
since every cell probability associated with an empty cell
would be estimated as zero. Thus, Wald’s estimator of
the parameter g surfaces as the MLE with or without
Wald’s assumption.

Berger’s three-parameter model for Wald’s first data
set is intriguing. We also tinkered with the Poisson model
a bit, but found the fit unacceptable. Berger’s idea and
rationale for separating the events {0 hits} and {at least
one hit} are appealing; it is the kind of idea that seems
obvious as soon as it is mentioned, but it is to Berger's
credit that he thought of it. Berger mistakenly claims that
his model yields decreasing probabilities for 1, 2, 3, . . .
hits. Actually, the positive Poisson model with parameter
vy has mode M = max([vy], 1), where [-] is the greatest
integer function. Thus, these probabilities increase up to
M and decrease thereafter. With Wald’s data, y is esti-
mated to be 1.38, so that A > \> > A3 > A4 > As in this
particular application. However, Berger’s model does not
guarantee this monotonicity. Furthermore, although the
Bayesian approach that Berger proposes in order to en-
sure the inequality Ao > \, can be expanded to cover \;
> vi+1 for all i, one should not underestimate the diffi-
culties involved in implementing such an approach in a
reasonable manner.

Having pointed out the lack of guaranteed monoton-
icity of the \;’s, we hasten to add that, in our view, Ber-
ger’s model nonetheless has substantial merit. Consider

the proposition that Ay > \,, that is, that an aircraft is
more likely to receive one hit than it is to receive two
hits. It seems to us that this proposition is not an inviol-
able imperative. Indeed, the expected number of hits de-
pends quite crucially on the density of fire. Suppose all
400 planes in Wald’s first problem were sent on a mission
in which intense fire was anticipated. It might well be
true that virtually no aircraft would receive only one hit.
In fact, it might be that aircraft would be more likely to
receive 10 or 12 hits than only one. Berger’s model will
accommodate such situations, and it should be useful in
problems in which the number of hits (to aircraft receiving
at least one hit) is expected to have a unimodal distri-
bution. It is interesting that data analysis with the three-
parameter model yields the same estimate of ¢ that Wald
obtained, which imparts a certain model robustness to
Wald’s results. One could also interpret this coincidence
as speaking to the model robustness of the approach Ber-
ger has taken. We are in agreement with the limitations
of Wald’s results, as discussed by Berger in his Sections
2 and 3.

Motivated in part by Berger’s comments on robustness,
we conducted our own study on the robustness of Wald’s
methods. Although the complete details are presented
elsewhere (Mangel and Samaniego 1984), we wish to de-
scribe our results briefly. We studied two questions: (a)

If the assumption that g; = ¢ for all j is violated, how

badly does one do in estimating the p,» using Wald’s
method? and (b) In the case of unequal q;, what are the
behavior and proper interpretation of Wald’s estimator
4? To answer these questions, we carried out a Monte
Carlo study in which data in (4.1) were repeatedly gen-
erated using a multinomial experiment with parameters
{pi;} chosen so that the q; were unequal but had the av-
erage 4 = .851, as in Wald’s data. Our base case involved
equal g;. We measured departure from the true proba-
bilities p;» via a x>-like statistic. We found that Wald’s
model worked very well in a fairly generous neighbor-
hood of the central value ¢ = .851, and that the fit was
a monotonic function of the dispersion in the set {q,, . . .,
gs}. We also discovered that Wald’s estimator ¢ is an
excellent estimator of the average g, regardless of the
dispersion.

3. COMMENTS AND QUESTIONS
RAISED IN TORONTO

A discussant took exception to Wald’s derivations and
proposed the following alternative analysis. Retaining the
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notation of Section 4 of our article, let
pj1 = P{receive exactly j hits and survive}
pi2 = P{receive exactly j hits and go down}.
It follows that

' = por = X (pj1 + pj2). R.D
j=1

The following modeling assumption was then introduced
(apparently after Wald):

Pi2lpjy = (1 —@lgq, j=1,2,.... (R.2)
Using (R.2) in (R.1) yields

I - po = zpjl(l +Bj-2)

= - 2 Pii. (R3)
j=1
Thus
l x®
= \ (R.4)
q l - p(” Ig] pJ‘
leading to the estimator
l =
j = ; R.5
q l - do 2 aJ ( )

Jj=1

for g. For Wald's data, one obtains § = .75, which differs
from the estimate of .851 obtained by Wald. Further dis-
cussion failed to shed any light on the comparative merits
of the two estimators.

The confusion during the discussion at Toronto was due
in part to blind acceptance of the faulty premise that the
two estimators were estimating the same parameter. The
proper resolution of this apparent anomaly is that these
estimators are not competing against each other, but in-
stead are valid estimators of parameters in different
models. Modeling assumption (R.2) is equivalent to

pillpipn +pp) =q, j=1,2,...,n, (R.6)
which differs from the modeling assumption
pillphn +p) =¢’, j=1,2,...,n (R7)

made by Wald. Indeed, if f,, . .. , f, are continuous,
increasing functions mapping (0, 1) onto itself, then the
modeling assumption

pitllpyy + pja) = fq), j=1,2,...,n (RS8)

for the multinomial data in (4.1) gives rise to a unique
MLE that can be obtained as the solution of the equation
n aj
>
1 file
Each such model has a parameter ¢, but the estimator of
q in one model has no meaning as an estimator of q in
another model.
It remains to comment on the modeling assumptions
(R.6) and (R.7). Equations (R.6) constitute the assump-

=1 - a,. (R.9)

2N

tion that the chance of surviving another hit, given sur-
vival thus far, is always the same. On the other hand,
equations (R.7) assert that the conditional probabiiity of
surviving another hit, given survival thus far, depends on
the number of hits sustained thus far. Wald’s general
model, with '

P ! .
o+ P iI=-[l g, J=1,...,n (R.10)
stipulates that these conditional probabilities are decreas-
ing. Wald’s assumption (R.7) asserts that these proba-
bilities decrease geometrically. It is thus clear that the
choice we have discussed is between two models rather
than between two estimators. Applications undoubtedly
exist in which either one of these models is more appro-
priate than the other.

A number of people have asked whether Wald's work
has actually been used. We do not know whether it was
used during World War 11, although it was produced early
enough in the war to have been available. We do know
that during the Vietnam War, analysts at the Operations
Evaluation Group of the Center for Naval Analyses used
Wald’s techniques to study the survivability of the A-4
aircraft. Their analysis led to structural modifications that
improved the A-4’s survivability. Wald’s methods were
also used by analysts at Wright Patterson Air Force Base
in studying ways of improving the B-52's survivability.
Cunningham and Hynd (1946) also provided perspective
on the use of statistical analysis during World War I1.

One tactical use of this kind of work is the development
of rules for exiting from combat. The most important case
is the one in which different survival probabilities are
estimated (that is, where the g¢; are not constant). For
example, consider the result presented in Table 1 of our
article. The change in the exact value of the probability
of surviving  hits as i increases from 1 to 2 is .130, from
2to 3 is .204, and from 3 to 4 is .235. When confronted
with such data, aviators could develop rules of thumb
such as, *‘Stay in combat with up to three hits, but leave
after the fourth.” Similarly, having an estimate for the
survival probabilities would provide the mission planner
with one more piece of information that could be used to
determine the number of aircraft to send into a particular
combat mission.

One factor that Wald did not take into account, but that
is quite important, is the crew of the aircraft. Studies done
during World War II showed that the crew was an im-
portant consideration in determining survivability. For
example, crews that had already survived three missions
had a much higher probability of continued survival
(Morse 1977 discusses this point in more detail).
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